Signed Domination Number of the Directed Cylinder

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domination number of the directed cylinder

Let ~ Pm ~ Cn be the Cartesian product of the directed path ~ Pm and the directed cycle ~ Cn. In this paper, we give the exact value of the domination number and the signed 2-independence number of ~ Pm ~ Cn for any integers m and n. ∗ Supported by the Academy of Finland, Grant No. 132122. † Supported in part by the Foundation for distinguished Young Teachers, Shanghai Education Committee (No. ...

متن کامل

Domination and Signed Domination Number of Cayley Graphs

In this paper, we investigate domination number as well as signed domination numbers of Cay(G : S) for all cyclic group G of order n, where n in {p^m; pq} and S = { a^i : i in B(1; n)}. We also introduce some families of connected regular graphs gamma such that gamma_S(Gamma) in {2,3,4,5 }.

متن کامل

Lower bounds on the signed (total) $k$-domination number

Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...

متن کامل

SIGNED ROMAN DOMINATION NUMBER AND JOIN OF GRAPHS

In this paper we study the signed Roman dominationnumber of the join of graphs. Specially, we determine it for thejoin of cycles, wheels, fans and friendship graphs.

متن کامل

Signed total Roman k-domination in directed graphs

Let $D$ be a finite and simple digraph with vertex set $V(D)$‎.‎A signed total Roman $k$-dominating function (STR$k$DF) on‎‎$D$ is a function $f:V(D)rightarrow{-1‎, ‎1‎, ‎2}$ satisfying the conditions‎‎that (i) $sum_{xin N^{-}(v)}f(x)ge k$ for each‎‎$vin V(D)$‎, ‎where $N^{-}(v)$ consists of all vertices of $D$ from‎‎which arcs go into $v$‎, ‎and (ii) every vertex $u$ for which‎‎$f(u)=-1$ has a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2019

ISSN: 2073-8994

DOI: 10.3390/sym11121443